

AC-1624

M. Sc. (Sem. IV) Examination

April / May - 2015

PH (T): 544: Physics

(Group Theory & Quantum Field Theory)

Time: 3 Hours]

[Total Marks: 70

Instructions:

(1)

નીચે દર્શાવેલ 🚁 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી.	Seat No.:		
Fillup strictly the details of 👉 signs on your answer book.			
Name of the Examination :			
M. SC. (SEM. IV)			
Name of the Subject :	l('		
→ PH (T) : 544 : PHYSICS			
-Subject Code No. : 1 6 2 4 -Section No. (1, 2,) : Nil	Student's Signature		

- (2) Attempt all questions.
- (3) Symbols used have their usual meaning.
- (4) Figures to the right indicate marks.
- (5) Assume data whenever necessary.

1 Attempt any two questions.

(i) (a) Define direct product of representation of a group.

- 3
- (b) Explicitly show that if σ_u , σ_v , $C_4^2 \in C_{4v}$ group, then $C_4^2 \sigma_u = \sigma_v$.
- 4
- (ii) (a) Define the character of a representation of a group and state the orthogonality 3 theorem for characters.
 - (b) Show that the set of all non-singular matrices of order n form a group under 4 matrix multiplication.
- (iii) (a) What is meant by conjugate element of a group? What is the conjugate element 3 to $m_v \in C_{4v}$.
 - (b) Explain the reducibility of representation of a group. What is meant by reducible 4 representation and an irreducible representation of a group?

2 Attempt any two questions.

(i) (a) What is meant by a continuous group? Give an example.

- 3
- (b) Consider a circle of radius a and let x measure the distance along the 4 circumference. Let f=f(x) and let $T(\varphi)$ stand for a rotation of the function f through an angle φ about an axis normal to the circle and passing through its centre. Find the generator for this transformation and express the operator $T(\varphi)$ in terms of the generators.

	(ii)	(a)	What are the groups O(3) and SO(3)? Show that O(3) = SO(3) \otimes (E, J).			
		(b)	Consider a linear homogeneous transformation of two variable of the form $x'=a_{11}x+a_{12}y$,	4		
			$y'=a_{21}x+a_{22}y$, with det $A=\left a_{ij}\right \neq 0$ Show that the set of all such transformation is a four-parameter group.			
	(iii)	(a)	Express a general element of a Lie group with r continuous parameters in term of the corresponding generators.	ıs :		
		(b)	Discuss the Lorentz group.			
3	3 Attempt any two questions.					
	(i)	(a)	Define number, creation and annihilation operators for a scalar field.	3		
		(b)	Discuss the Lagrangian formulation and quantization rules for a charged scalar field.	4		
	(ii)	(a)	Define vacuum state of a free scalar field.	3		
		(b)	Define normal product operator and find $:aa^{\dagger} + aa^{\dagger}a:$.	4		
	(iii)	(a)	What is meant by Lagrangian density and Hamiltonian density functions?	3		
		(b)	Write the free field Lagrangian density for the spin zero field and obtain the field equation corresponding to the Klein-Gordon equation.	4		
4	4 Attempt any two questions.					
	(i)	(a)	Write the Feynman diagram with one loop correction in the case of electron-electron scattering with a static charge.	3		
		(b)	Apply the Feynman rules for the above case and express the scattering amplitude.	4		
	(ii)	(a)	Discuss the rules for Feynman graphs in configuration space.	3		
		(b)	Discuss in some details the idea of renormalization.	4		
	(iii)	(a)	Establish the anti-commutation relations for the Dirac field.	3		
		(b)	Describe the initial and final state vectors for the scattering of a photon by an electron (Compton Scattering) and draw the corresponding Feynman diagrams and give the expression for the S-matrix elements.	4		
5	5 Attempt any two questions.					
	(i)	(a)	Explain the main features of QCD as the theory for strong interaction.	3		
		(b)	Discuss the Higg's mechanism with reference to spontaneous symmetry breaking.	4		
	(ii)	(a)	Express the interaction Lagrangian, $L_i = -g_i : [\bar{R_e} \varphi^{\dagger} L_e + \bar{L_e} \varphi R_e]$: in terms of the physical fields ψ_e and Φ_0 .	3		
		(b)	Write the interaction Lagrangian and draw the Feynman diagrams for the process: (a) emission of a photon by an electron; (b) electron-positron annihilation.	4		
	(iii)	(a)	What are gauge transformations? Explain the gauge principle and gauge fields.	3		
		(b)	Discuss the spontaneous breaking of global symmetry in Goldstone model.	4		